Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Sci Rep ; 11(1): 23373, 2021 12 03.
Article in English | MEDLINE | ID: covidwho-1550343

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19, is still a widespread threat to society. The spike protein of this virus facilitates viral entry into the host cell. Here, the denaturation of the S1 subunit of this spike protein by 2.45 GHz electromagnetic radiation was studied quantitatively. The study only pertains to the pure electromagnetic effects by eliminating the bulk heating effect of the microwave radiation in an innovative setup that is capable of controlling the temperature of the sample at any desired intensity of the electromagnetic field. This study was performed at the internal human body temperature, 37 °C, for a relatively short amount of time under a high-power electromagnetic field. The results showed that irradiating the protein with a 700 W, 2.45 GHz electromagnetic field for 2 min can denature the protein to around 95%. In comparison, this is comparable to thermal denaturation at 75 °C for 40 min. Electromagnetic denaturation of the proteins of the virus may open doors to potential therapeutic or sanitation applications.


Subject(s)
Protein Denaturation/radiation effects , Spike Glycoprotein, Coronavirus/radiation effects , Microwaves/therapeutic use , SARS-CoV-2/radiation effects , Temperature
2.
Catalysts ; 11(2):191, 2021.
Article in English | MDPI | ID: covidwho-1060271

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global threat to human health and the economy. Society needs inexpensive, fast, and accurate quantitative diagnostic tools. Here, we report a new approach using a solid-state biosensor to measure antibodies, which does not require functionalization, unlike conventional biosensors. A nanostructured semiconductor surface with catalytic properties was used as a transducer for rapid immobilization and measurement of the antibody. The transducer response was based on solid-state electronics properties. The changes on the surface of the semiconductor induced changes in the direct current (DC) surface resistivity. This was a result of a catalytic chemical reaction on that surface. This new low-cost approach reduced the response time of the measurement significantly, and it required only a very small amount of sample on the microliter scale.

SELECTION OF CITATIONS
SEARCH DETAIL